找回密码
 立即注册

QQ登录

只需一步,快速开始

微信扫码登录

使用验证码登录

理性思维原则的概率基础:休谟公理[转]

[复制链接]

马上注册,结交更多好友,享用更多功能,让你轻松玩转社区。

您需要 登录 才可以下载或查看,没有账号?立即注册

x
  太蔟

  在2005年11月9日《中国青年报·冰/点/周刊》的题为“科学时代的伪科学
(上)”的文章中,方舟子写道,

  “要判断证据是否确凿,通常需要具有专业的知识和训练,一般的人并不具
有这种能力。但是,如果我们能够掌握科学理性思维的原则,那么,即使缺乏具
体分析的能力,也不容易被伪科学迷惑。在正反双方都缺乏证据的时候,理性思
维的原则也有助于我们判断哪一方的观点更合理,更有可能,更应该被接受。

  18世纪英国哲学家休谟在《人类理解力研究》一书中,提出了理性思维的一
条总原则,有时候被叫做休谟公理:

  ‘没有任何证言足以确定一个神迹,除非该证言属于这样的情形,其虚假比
它力图确立的事实更为神奇。’

  这句话很拗口,不过,通过举例,并不难理解。休谟举了一个例子,如果有
人告诉他看到一位死人复活,他会比较以下情形,看看哪一种可能比较大:这个
人在骗人或受了别人的蒙骗,还是死人真的复活了?除非前者虚假的可能性低于
后者,否则不应该接受他的证言。显然,这实际上是在比较正反两种可能性的大
小,并拒绝可能性小的那种。这并不是断然否定可能性小的神秘事件没有发生的
可能,而是说,在没有足够的证据时,我们不应该倾向于接受它。死人真正复活、
自然规律不成立的可能性,远远小于一个声称看到死人复活的证言是谎言,或证
人受欺骗的可能性,因此我们不应相信前者是的确发生过的。同样,人体特异功
能是真实的、物理定律不成立的可能性,远远小于“特异功能大师”是在玩骗人
的把戏的可能性。”

  休谟对该公理的陈述和举例原文如下:

  The plain consequence is (and it is a general maxim worthy of our
attention), "That no testimony is sufficient to establish a miracle,
unless the testimony be of such a kind, that its falsehood would be
more miraculous, than the fact, which it endeavours to establish; and
even in that case there is a mutual destruction of arguments, and the
superior only gives us an assurance suitable to that degree of force,
which remains, after deducting the inferior." When anyone tells me,
that he saw a dead man restored to life, I immediately consider with
myself, whether it be more probable, that this person should either
deceive or be deceived, or that the fact, which he relates, should
really have happened. I weigh the one miracle against the other; and
according to the superiority, which I discover, I pronounce my decision,
and always reject the greater miracle. If the falsehood of his
testimony would be more miraculous, than the event which he relates;
then, and not till then, can he pretend to command my belief or opinion.

  方舟子少译了休谟公理的后半段,“and even in that case there is a
mutual destruction of arguments, and the superior only gives us an
assurance suitable to that degree of force, which remains, after
deducting the inferior.”。

  我试意译如下:

  “即便在证言足以确定一个神迹的情况下,那证言对神迹确定的可信度,是
神迹可信度与证言不可信度之差。”

  换言之,如果证言不可信度与神迹可信度相近,那么证言基本不能确定神迹。

  休谟公理的文字陈述的确很拗口,但如果我们把它形式化表达一下,就好理
解多了。

  令:T代表证言,M代表神迹;P(T)代表证言可信度,即其正确的概率;P(M)
代表神迹可信度。

  那么,休谟公理的前半段就是:

  如果(1-P(T))< P(M),那么T确定M;反之,T不能确定M。

  休谟公理的后半段是:

  如果(1-P(T))< P(M),那么T确定M成立的可信度为(P(M)+P(T)-1)。

  代几个数进去算算。

  如果P(M)=1%,P(T)=20%,那么 1-P(T)=80% > P(M),T不能确定M。

  如果P(M)=1%,P(T)=99.5%,那么 1-P(T)=0.5% < P(M),T确定M,但该确定
的可信度仅为(P(M)+P(T)-1)=0.5%,很低。

  如果P(M)=20%,P(T)=95%,那么 1-P(T)=5% < P(M),T确定M,该确定的可
信度为(P(M)+P(T)-1)=15%,有长进。

  如果P(M)=80%,P(T)=70%,那么 1-P(T)=30% < P(M),T确定M,该确定的可
信度为(P(M)+P(T)-1)=50%,手心手背之间。

  如果P(M)=90%,P(T)=90%,那么 1-P(T)=10% < P(M),T确定M,该确定的可
信度为(P(M)+P(T)-1)=80%,非常可信。

  几个定性推论:

  1 如果神迹可信度非常低,且证言可信度也低,那证言无法确定神迹;

  2 如果神迹可信度非常低,即使证言可信度非常高,证言也极难令人信服地
确定神迹;

  3 即使神迹可信度很高,且证言可信度也很高,证言确定神迹仍在模棱两可
之间;

  4 神迹可信度与证言可信度均极高,证言确定神迹的可信度也非常高,但该
确定可信度低于神迹可信度与证言可信度中任何一值。

  当然休谟公理的“公理”性,值得理论理论,但经验告诉我们,它的“公理”
性很强。
分享至 : QQ空间
收藏
该用户还没有设置签名内容!

1 个回复

倒序浏览
魅力 LV.36+ 2009-5-20 13:52
沙发 来自: 中国广东惠州
什么东东?睇吾明
该用户还没有设置签名内容!
您需要登录后才可以回帖 登录 | 立即注册